\begin{equation} \DeclareMathOperator\Gr{Gr} \DeclareMathOperator\LGr{LGr} \DeclareMathOperator\OGr{OGr} \DeclareMathOperator\SGr{SGr} \DeclareMathOperator\Kzero{K_0} \DeclareMathOperator\index{i} \DeclareMathOperator\rk{rk} \end{equation}

Grassmannian.info

A periodic table of (generalised) Grassmannians.

Odd symplectic Grassmannian $\operatorname{SGr}(3,15)=X^3(7, 3)$

Y Z Y Z Y Z Y Z Y Z Y Z Y Z
Betti numbers
\begin{align*} \mathrm{b}_{ 0 } &= 1 \\ \mathrm{b}_{ 2 } &= 1 \\ \mathrm{b}_{ 4 } &= 2 \\ \mathrm{b}_{ 6 } &= 3 \\ \mathrm{b}_{ 8 } &= 4 \\ \mathrm{b}_{ 10 } &= 5 \\ \mathrm{b}_{ 12 } &= 7 \\ \mathrm{b}_{ 14 } &= 8 \\ \mathrm{b}_{ 16 } &= 10 \\ \mathrm{b}_{ 18 } &= 12 \\ \mathrm{b}_{ 20 } &= 14 \\ \mathrm{b}_{ 22 } &= 16 \\ \mathrm{b}_{ 24 } &= 18 \\ \mathrm{b}_{ 26 } &= 19 \\ \mathrm{b}_{ 28 } &= 20 \\ \mathrm{b}_{ 30 } &= 21 \\ \mathrm{b}_{ 32 } &= 21 \\ \mathrm{b}_{ 34 } &= 21 \\ \mathrm{b}_{ 36 } &= 21 \\ \mathrm{b}_{ 38 } &= 20 \\ \mathrm{b}_{ 40 } &= 19 \\ \mathrm{b}_{ 42 } &= 18 \\ \mathrm{b}_{ 44 } &= 16 \\ \mathrm{b}_{ 46 } &= 14 \\ \mathrm{b}_{ 48 } &= 12 \\ \mathrm{b}_{ 50 } &= 10 \\ \mathrm{b}_{ 52 } &= 8 \\ \mathrm{b}_{ 54 } &= 7 \\ \mathrm{b}_{ 56 } &= 5 \\ \mathrm{b}_{ 58 } &= 4 \\ \mathrm{b}_{ 60 } &= 3 \\ \mathrm{b}_{ 62 } &= 2 \\ \mathrm{b}_{ 64 } &= 1 \\ \mathrm{b}_{ 66 } &= 1 \end{align*}
Basic information
dimension
33
index
13
Euler characteristic
364
Betti numbers
$\mathrm{b}_{ 0 } = 1$, $\mathrm{b}_{ 2 } = 1$, $\mathrm{b}_{ 4 } = 2$, $\mathrm{b}_{ 6 } = 3$, $\mathrm{b}_{ 8 } = 4$, $\mathrm{b}_{ 10 } = 5$, $\mathrm{b}_{ 12 } = 7$, $\mathrm{b}_{ 14 } = 8$, $\mathrm{b}_{ 16 } = 10$, $\mathrm{b}_{ 18 } = 12$, $\mathrm{b}_{ 20 } = 14$, $\mathrm{b}_{ 22 } = 16$, $\mathrm{b}_{ 24 } = 18$, $\mathrm{b}_{ 26 } = 19$, $\mathrm{b}_{ 28 } = 20$, $\mathrm{b}_{ 30 } = 21$, $\mathrm{b}_{ 32 } = 21$, $\mathrm{b}_{ 34 } = 21$, $\mathrm{b}_{ 36 } = 21$, $\mathrm{b}_{ 38 } = 20$, $\mathrm{b}_{ 40 } = 19$, $\mathrm{b}_{ 42 } = 18$, $\mathrm{b}_{ 44 } = 16$, $\mathrm{b}_{ 46 } = 14$, $\mathrm{b}_{ 48 } = 12$, $\mathrm{b}_{ 50 } = 10$, $\mathrm{b}_{ 52 } = 8$, $\mathrm{b}_{ 54 } = 7$, $\mathrm{b}_{ 56 } = 5$, $\mathrm{b}_{ 58 } = 4$, $\mathrm{b}_{ 60 } = 3$, $\mathrm{b}_{ 62 } = 2$, $\mathrm{b}_{ 64 } = 1$, $\mathrm{b}_{ 66 } = 1$
$G$
$\mathrm{PSp}_{ 14 }$
$\dim G$
98
$\mathrm{Aut}^0(X^3(7, 3))$
$G\ltimes U$
$\dim\mathrm{Aut}^0(X^3(7, 3))$
147

Geometric description
zero locus of $\bigwedge^2\mathcal{U}^\vee$ in $\operatorname{Gr}(3,15)$.
Blowups and projections
role dimension codimension index
$Z=\SGr(2,14)$ Y Z Y Z Y Z Y Z Y Z Y Z Y Z unique closed $\mathrm{Aut}(X^3(7, 3))$-orbit 23 10 13
$Y=\SGr(3,14)$ Y Z Y Z Y Z Y Z Y Z Y Z Y Z other closed $\mathrm{PSp}_{ 14 }$ -orbit 30 3 12
\begin{equation} \xymatrix{ E_{ \SGr(2,14) } \ar@{^{(}->}[r] \ar@{->>}[d] & \operatorname{Bl}_{ \SGr(2,14) } X^3(7, 3) \ar@{->>}[r]^(.6){\mathbb{P}^{ 3 }} \ar@{->>}[d] & \href{/C7/3 }{ \SGr(3,14) } \\ \href{/C7/2 }{ \SGr(2,14) } \ar[r] & X^3(7, 3) } \end{equation} \begin{equation} \xymatrix{ E_{ \SGr(3,14) } \ar@{^{(}->}[r] \ar@{->>}[d] & \operatorname{Bl}_{ \SGr(3,14) } X^3(7, 3) \ar@{->>}[r]^(.6){\mathbb{P}^{ 10 }} \ar@{->>}[d] & \href{/C7/2 }{ \SGr(2,14) } \\ \href{/C7/3 }{ \SGr(3,14) } \ar[r] & X^3(7, 3) } \end{equation}
The exceptional divisor is the partial flag variety Y Z Y Z Y Z Y Z Y Z Y Z Y Z
$ E_{ \SGr(3,14) } \cong E_{ \SGr(2,14) } \cong \mathrm{ C }_{ 7 } / \mathrm{P}_{ 3, 2 } $
Exceptional collections

No full exceptional collection is known for $\mathbf{D}^{\mathrm{b}}(X^3(7, 3))$. Will you be the first to construct one? Let us know if you do!

Quantum cohomology

The small quantum cohomology is generically semisimple.

The big quantum cohomology is generically semisimple.

The eigenvalues of quantum multiplication by $\mathrm{c}_1(X^3(7, 3))$ are given by:

Homological projective duality